16 research outputs found

    Combined direct-sun ultraviolet and infrared spectroscopies at Popocatépetl volcano (Mexico)

    Get PDF
    Volcanic plume composition is strongly influenced by both changes in magmatic systems and plume-atmosphere interactions. Understanding the degassing mechanisms controlling the type of volcanic activity implies deciphering the contributions of magmatic gases reaching the surface and their posterior chemical transformations in contact with the atmosphere. Remote sensing techniques based on direct solar absorption spectroscopy provide valuable information about most of the emitted magmatic gases but also on gas species formed and converted within the plumes. In this study, we explore the procedures, performances and benefits of combining two direct solar absorption techniques, high resolution Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet Differential Optical Absorption Spectroscopy (UV-DOAS), to observe the composition changes in the Popocatépetl’s plume with high temporal resolution. The SO2 vertical columns obtained from three instruments (DOAS, high resolution FTIR and Pandora) were found similar (median difference <12%) after their intercalibration. We combined them to determine with high temporal resolution the different hydrogen halide and halogen species to sulfur ratios (HF/SO2, BrO/SO2, HCl/SO2, SiF4/SO2, detection limit of HBr/SO2) and HCl/BrO in the Popocatépetl’s plume over a 2.5-years period (2017 to mid-2019). BrO/SO2, BrO/HCl, and HCl/SO2 ratios were found in the range of (0.63 ± 0.06 to 1.14 ± 0.20) × 10−4, (2.6 ± 0.5 to 6.9 ± 2.6) × 10−4, and 0.08 ± 0.01 to 0.21 ± 0.01 respectively, while the SiF4/SO2 and HF/SO2 ratios were found fairly constant at (1.56 ± 0.25) × 10−3 and 0.049 ± 0.001. We especially focused on the full growth/destruction cycle of the most voluminous lava dome of the period that took place between February and April 2019. A decrease of the HCl/SO2 ratio was observed with the decrease of the extrusive activity. Furthermore, the short-term variability of BrO/SO2 is measured for the first time at Popocatépetl volcano together with HCl/SO2, revealing different behaviors with respect to the volcanic activity. More generally, providing such temporally resolved and near-real-time time series of both primary and secondary volcanic gaseous species is critical for the management of volcanic emergencies, as well as for the understanding of the volcanic degassing processes and their impact on the atmospheric chemistry.We acknowledge financial support from grants UNAM-PAPIIT IA101620 and IN111521. NT and TBo also thank the stipend given by the Mexican Foreign Affairs Department (Secretaría de Relaciones Exteriores) and its AMEXCID program. Financial support from Conacyt-AEM through grant No. 275239 is acknowledged

    Breathing and Coughing: The Extraordinarily High Degassing of Popocatépetl Volcano Investigated With an SO2 Camera

    Get PDF
    How do lava domes release volcanic gases? Studying this problem is crucial to understand, and potentially anticipate, the generation of the sudden and dangerous explosive eruptions that frequently accompany dome extrusions. Since its awakening in 1994, Popocatépetl volcano has produced more than 50 lava domes and has been consistently among the strongest permanent emitters of volcanic gases. In this work, we have characterized the passive and explosive degassing between 2013 and 2016 at a high time resolution using an SO2 camera, to achieve a better understanding of the conduit processes. Our 4-year average SO2 flux is 45 kg/s, in line with the long-term average of the whole current eruptive period. We show that Popocatépetl volcano is essentially an open system and that passive degassing, i.e., degassing with no associated emission of lava or ash, dominates &gt;95% of the time. This passive degassing is continuous and sustained, whether the crater contains a lava dome or not. It shows most of the time a strong periodic component, with a pseudo-period of ~5 min, and amplitudes of 30 to 60% of the average value. We could distinguish two types of explosions based on their SO2 flux patterns. The first type (E1) occurs in the middle of the normal passive degassing and is followed by a rapid return of the SO2 flux down to its pre-explosive level. The second type (E2), which corresponds to the strongest events, is anticipated by a rapid decrease of the SO2 flux to abnormally low values and is followed by a return to its normal values. The E2 explosions are probably caused by the accumulation of gas below a rapidly compacting permeable dome. We suggest that transient episodes of gravitational compaction of the usually permeable dome and the upper conduit is the only mechanism that is fast enough to explain the sharp decrease of the SO2 flux that anticipates the E2 explosions. Our model is potentially applicable to a large number of andesitic volcanoes that undergo passive degassing interspersed with short-lived explosions

    Aerosol properties derived from ground-based Fourier transform spectra within the COllaborative Carbon Column Observing Network

    Get PDF
    Fourier transform infrared (FTIR) spectroscopy is particularly relevant for climate studies due to its ability to provide information on both fine absorption structures (i.e. trace gases) and broadband continuum signatures (i.e. aerosols or water continuum) across the entire infrared (IR) domain. In this context, this study assesses the capability of the portable and compact EM27/SUN spectrometer, used within the research infrastructure COCCON (COllaborative Carbon Column Observing Network), to retrieve spectral aerosol properties from low-resolution FTIR solar absorption spectra (0.5 cm−1). The study focuses on the retrieval of aerosol optical depth (AOD) and its spectral dependence in the 873–2314 nm spectral range from COCCON measurements at the subtropical high-mountain Izaña Observatory (IZO, Tenerife, Spain), which were coincidentally carried out with standard sun photometry within the Aerosol Robotic Network (AERONET) in the 3-year period from December 2019 to September 2022. The co-located AERONET–COCCON database was used to cross-validate these two independent techniques in the common spectral range (870–1640 nm), demonstrating an excellent agreement at the near-coincident spectral bands (mean AOD differences limited to 0.005, standard deviations up to 0.021 and Pearson regression coefficients up to 0.97). This indicates that the low-resolution COCCON instruments are suitable for detecting the aerosol broadband signal contained in the IR spectra in addition to the retrieval of precise trace gas concentrations, provided a robust calibration procedure (Langley-based or absolute calibration procedures) is used to compensate for the optical degradation of the external system (∼ 0.72 % per month). The study also assesses the capability of the EM27/SUN to simultaneously infer aerosols and trace gases and relate their common emission sources in two case study events: a volcanic plume from the La Palma eruption in 2021 and a nearby forest fire in Tenerife in 2022. Overall, our results demonstrate the potential of the portable low-resolution COCCON instruments to enhance the multi-parameter capability of the FTIR technique for atmospheric monitoring.</p

    Aerosol properties derived from ground-based Fourier transform spectra within the COllaborative Carbon Column Observing Network

    Get PDF
    Fourier transform infrared (FTIR) spectroscopy is particularly relevant for climate studies due to its ability to provide information on both fine absorption structures (i.e. trace gases) and broadband continuum signatures (i.e. aerosols or water continuum) across the entire infrared (IR) domain. In this context, this study assesses the capability of the portable and compact EM27/SUN spectrometer, used within the research infrastructure COCCON (COllaborative Carbon Column Observing Network), to retrieve spectral aerosol properties from low-resolution FTIR solar absorption spectra (0.5 cm1^{−1}). The study focuses on the retrieval of aerosol optical depth (AOD) and its spectral dependence in the 873–2314 nm spectral range from COCCON measurements at the subtropical high-mountain Izaña Observatory (IZO, Tenerife, Spain), which were coincidentally carried out with standard sun photometry within the Aerosol Robotic Network (AERONET) in the 3-year period from December 2019 to September 2022. The co-located AERONET–COCCON database was used to cross-validate these two independent techniques in the common spectral range (870–1640 nm), demonstrating an excellent agreement at the near-coincident spectral bands (mean AOD differences limited to 0.005, standard deviations up to 0.021 and Pearson regression coefficients up to 0.97). This indicates that the low-resolution COCCON instruments are suitable for detecting the aerosol broadband signal contained in the IR spectra in addition to the retrieval of precise trace gas concentrations, provided a robust calibration procedure (Langley-based or absolute calibration procedures) is used to compensate for the optical degradation of the external system (∼ 0.72 % per month). The study also assesses the capability of the EM27/SUN to simultaneously infer aerosols and trace gases and relate their common emission sources in two case study events: a volcanic plume from the La Palma eruption in 2021 and a nearby forest fire in Tenerife in 2022. Overall, our results demonstrate the potential of the portable low-resolution COCCON instruments to enhance the multi-parameter capability of the FTIR technique for atmospheric monitoring

    The fate of terrestrial biodiversity during an oceanic island volcanic eruption

    Get PDF
    Volcanic activity provides a unique opportunity to study the ecological responses of organisms to catastrophic environmental destruction as an essential driver of biodiversity change on islands. However, despite this great scientific interest, no study of the biodiversity at an erupting volcano has yet been undertaken. On La Palma (Canary archipelago), we quantified the main species affected and their fate during the 85-day eruption (September–December 2021). Our main objective consisted of monitoring the biodiversity subjected to critical stress during this volcanic eruption. We found that all biodiversity within a 2.5 km radius was severely affected after the first two weeks. It is challenging to assess whether volcanism can drive evolutionary traits of insular organisms. Examples are the adaptation of an endemic conifer to high temperatures, selection of functional plant types—secondary woodiness—, effects of the disappearance of invertebrates and their influence in trophic nets and vertebrate trophic plasticity. However, our data suggest that such previous evolutionary changes might continue to favour their resilience during this eruption. Lastly, it is a very good opportunity to assess the extent to which these periodic volcanic catastrophes may constitute temporary windows of repeated opportunities for the evolution and speciation of oceanic island biota.Daily interchange of biological information with our team of volcanologists was the key to better understanding many details of the impact of this 85-day eruption on the rich local biodiversity. Pablo González, Sergio Rodríguez, Jesica López provided us with important references, comments, and support in the field. Sergio Pérez helped identify lichens, and Juan Ignacio Padrón and Jesús Marco provided all kinds of logistic support. We thank the financial support from the Spanish Ministry of Science and Innovation (Real Decreto 1078/2021, de 7 de diciembre), to fund the research activities of the CSIC-PIE project with ID numbers CSIC-LAPALMA-02 and CSIC-LAPALMA-05. The administration of the IPNA-CSIC, Cabildo Insular de La Palma, Gobierno de Canarias and Gesplan S.A. facilitated our work. The manuscript was proof edited by Guido Jones, currently funded by the Cabildo de Tenerife, under the TFinnova Programme supported by MEDI and FDCAN funds. This article is dedicated to the memory of Aurelio Acevedo Rodríguez for his defence of Canarian biodiversity, particularly threatened endemic plants.Peer reviewe

    Impact of the 2021 La Palma volcanic eruption on air quality: Insights from a multidisciplinary approach

    Get PDF
    The La Palma 2021 volcanic eruption was the first subaerial eruption in a 50-year period in the Canary Islands (Spain), emitting ~1.8 Tg of sulphur dioxide (SO2) into the troposphere over nearly 3 months (19 September-13 December 2021), exceeding the total anthropogenic SO2 emitted from the 27 European Union countries in 2019. We conducted a comprehensive evaluation of the impact of the 2021 volcanic eruption on air quality (SO2, PM10 and PM2.5 concentrations) utilising a multidisciplinary approach, combining ground and satellite-based measurements with height-resolved aerosol and meteorological information. High concentrations of SO2, PM10 and PM2.5 were observed in La Palma (hourly mean SO2 up to ~2600 μg m−3 and also sporadically at ~140 km distance on the island of Tenerife (> 7700 μg m−3) in the free troposphere. PM10 and PM2.5 daily mean concentrations in La Palma peaked at ~380 and 60 μg m−3. Volcanic aerosols and desert dust both impacted the lower troposphere in a similar height range (~ 0–6 km) during the eruption, providing a unique opportunity to study the combined effect of both natural phenomena. The impact of the 2021 volcanic eruption on SO2 and PM concentrations was strongly influenced by the magnitude of the volcanic emissions, the injection height, the vertical stratification of the atmosphere and its seasonal dynamics. Mean daily SO2 concentrations increased during the eruption, from 38 μg m−3 (Phase I) to 92 μg m−3 (Phase II), showing an opposite temporal trend to mean daily SO2 emissions, which decreased from 34 kt (Phase I) to 7 kt (Phase II). The results of this study are relevant for emergency preparedness in all international areas at risk of volcanic eruptions; a multidisciplinary approach is key to understand the processes by which volcanic eruptions affect air quality and to mitigate and minimise impacts on the population.The authors also acknowledge the support from ACTRIS and ACTRIS-Spain, the Spanish Ministry of Science and Innovation and the support from the European Union H2020 program through the following projects (PID2019-104205GB-C21/AEI/10.13039/501100011033, EQC2018-004686-P, PID2019-103886RB-I00/AEI/10.13039/501100011033 and PID2020-521-118793GA-I00) and programs (GA No. 654109, 778349, 871115, 101008004 and 101086690). Research activities of the CSIC staff during the eruption were funded by CSIC through the CSIC-PIE project with ID numbers PIE20223PAL009 and PIE20223PAL013 (Real Decreto 1078/2021, de 7 de diciembre). Part of this study was performed within the framework of the project AERO-EXTREME (PID2021-125669NB-I00) funded by the Spanish State Research Agency (AEI) and ERDF funds

    Monitoring géochimique de la géosphère et l'atmosphère : application au stockage géologique du CO2

    No full text
    This study is based on the problematic of gas exchanges at the interface between the geosphere, biosphere, hydrosphere and atmosphere through the geochemical monitoring of gas applied to CO2 geological storage sites. Concerning the "Metrological" aspect, we developed and implemented an in situ continuous geochemical monitoring station, based on coupling FTIR/ Raman spectrometry for measuring soil gas (O2, N2, CO2, CH4 and H2O) close to the injection wells of Rousse 1 (CCS Total pilot, Lacq-Rousse, France). We also developed protocols to identify and quantify CO2, CH4, SO2, H2S in the atmosphere (plume) by passive remote sensing FTIR. On the "Monitoring" and "Modelling" aspects, the continuous recording of soil CO2 concentration during more than 7 seasonal cycles indicate that CO2 concentration in the soil was anti-correlated with changes in piezometric level of the groundwater. This correlation was used to model the limits of natural variability of CO2 content in the soil, which is a key to CCS sites monitoring. The main fluctuations in soil CO2 content was assigned to a dissolution/release process of CO2 by the perched water table, acting as a CO2 pump. The CO2 concentration at the near surface (+ 1 m) would be governed by changes of the soil CO2 content. FITR remote sensing measurement of atmospheric gases allowed for the first time to perform an experimental 3D simulation of CO2 layers on the injection site. This type of experimental simulation is a first step for the monitoring of gases in the atmosphereCette thèse touche à la problématique des échanges de gaz aux interfaces entre la géosphère, la biosphère, l'hydrosphère et l'atmosphère par l'intermédiaire du monitoring géochimique des gaz appliqué aux sites de stockage géologiques du CO2. Au niveau de l'axe « Métrologie », nous avons développé une plate-forme de monitoring géochimique continu, in situ et déportée par spectrométrie FTIR/Raman pour la mesure des gaz du sol (CO2, CH4, N2, O2, H2O). Des protocoles de quantification ont été développés pour la mesure par télédétection infrarouge terrestre en mode passif du CO2, CH4, SO2, H2S dans l'atmosphère. Au niveau des axes « Monitoring » et « Modélisation », les mesures de gaz du sol à proximité du puits d'injection de Rousse (Pilote CO2 Total, Lacq/Rousse, France) sur plus de sept cycles saisonniers ont montré une anti-corrélation entre la teneur en CO2 et les variations du niveau piézométrique de la nappe. Cette relation a permis de modéliser l'enveloppe de variabilité « naturelle » de la teneur en CO2 dans le sol, qui constitue un élément clé pour la surveillance des sites de stockage. Les variations majeures de teneur en CO2 sont attribuées à des processus de dissolution/libération de CO2 par la nappe, jouant un rôle de pompe à CO2. La concentration en CO2 en surface (+1m) serait gouvernée par les variations de teneur en CO2 du sol. Les mesures par télédétection FTIR des gaz dans l'atmosphère ont permis d'établir pour la première fois une simulation expérimentale 3D des enveloppes de CO2 à l'aplomb du site d'injection. Ces résultats constituent un premier pas vers la mise en place d'un outil de surveillance des panaches gazeux dans l'atmosphèr

    Geochemical monitoring of Geosphere and Atmosphere : Application to geological storage of CO2

    No full text
    Cette thèse touche à la problématique des échanges de gaz aux interfaces entre la géosphère, la biosphère, l'hydrosphère et l'atmosphère par l'intermédiaire du monitoring géochimique des gaz appliqué aux sites de stockage géologiques du CO2. Au niveau de l'axe « Métrologie », nous avons développé une plate-forme de monitoring géochimique continu, in situ et déportée par spectrométrie FTIR/Raman pour la mesure des gaz du sol (CO2, CH4, N2, O2, H2O). Des protocoles de quantification ont été développés pour la mesure par télédétection infrarouge terrestre en mode passif du CO2, CH4, SO2, H2S dans l'atmosphère. Au niveau des axes « Monitoring » et « Modélisation », les mesures de gaz du sol à proximité du puits d'injection de Rousse (Pilote CO2 Total, Lacq/Rousse, France) sur plus de sept cycles saisonniers ont montré une anti-corrélation entre la teneur en CO2 et les variations du niveau piézométrique de la nappe. Cette relation a permis de modéliser l'enveloppe de variabilité « naturelle » de la teneur en CO2 dans le sol, qui constitue un élément clé pour la surveillance des sites de stockage. Les variations majeures de teneur en CO2 sont attribuées à des processus de dissolution/libération de CO2 par la nappe, jouant un rôle de pompe à CO2. La concentration en CO2 en surface (+1m) serait gouvernée par les variations de teneur en CO2 du sol. Les mesures par télédétection FTIR des gaz dans l'atmosphère ont permis d'établir pour la première fois une simulation expérimentale 3D des enveloppes de CO2 à l'aplomb du site d'injection. Ces résultats constituent un premier pas vers la mise en place d'un outil de surveillance des panaches gazeux dans l'atmosphèreThis study is based on the problematic of gas exchanges at the interface between the geosphere, biosphere, hydrosphere and atmosphere through the geochemical monitoring of gas applied to CO2 geological storage sites. Concerning the "Metrological" aspect, we developed and implemented an in situ continuous geochemical monitoring station, based on coupling FTIR/ Raman spectrometry for measuring soil gas (O2, N2, CO2, CH4 and H2O) close to the injection wells of Rousse 1 (CCS Total pilot, Lacq-Rousse, France). We also developed protocols to identify and quantify CO2, CH4, SO2, H2S in the atmosphere (plume) by passive remote sensing FTIR. On the "Monitoring" and "Modelling" aspects, the continuous recording of soil CO2 concentration during more than 7 seasonal cycles indicate that CO2 concentration in the soil was anti-correlated with changes in piezometric level of the groundwater. This correlation was used to model the limits of natural variability of CO2 content in the soil, which is a key to CCS sites monitoring. The main fluctuations in soil CO2 content was assigned to a dissolution/release process of CO2 by the perched water table, acting as a CO2 pump. The CO2 concentration at the near surface (+ 1 m) would be governed by changes of the soil CO2 content. FITR remote sensing measurement of atmospheric gases allowed for the first time to perform an experimental 3D simulation of CO2 layers on the injection site. This type of experimental simulation is a first step for the monitoring of gases in the atmospher
    corecore